Four ways blue foods can help achieve food system ambitions across nations

Four ways blue foods can help achieve food system ambitions across nations
  • Golden, C. D. et al. Aquatic foods for nourishing nations. Nature 598, 315–320 (2021).

    Article 
    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Gephart, J. A. et al. Environmental performance of blue foods. Nature 597, 360–365 (2021).

    Article 
    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Continuous Update Project Expert Report 2018. Meat, Fish and Dairy Products and the Risk of Cancer (World Cancer Research Fund/American Institute for Cancer Research, 2018).

  • Cisneros-Montemayor, A. M., Pauly, D., Weatherdon, L. V. & Ota, Y. A global estimate of seafood consumption by coastal Indigenous peoples. PLoS ONE 11, e0166681 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halpern, B. S. et al. Opinion: Putting all foods on the same table: achieving sustainable food systems requires full accounting. Proc. Natl Acad. Sci. USA 116, 18152–18156 (2019).

    Article 
    CAS 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bennett, A. et al. Recognize fish as food in policy discourse and development funding. Ambio 50, 981–989 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Béné, C. et al. Feeding 9 billion by 2050 – putting fish back on the menu. Food Secur. 7, 261–274 (2015).

    Article 

    Google Scholar
     

  • Koehn, J. Z., Allison, E. H., Golden, C. D. & Hilborn, R. The role of seafood in sustainable diets. Environ. Res. Lett. 17, 035003 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Tlusty, M. F. et al. Reframing the sustainable seafood narrative. Glob. Environ. Change 59, 101991 (2019).

    Article 

    Google Scholar
     

  • Naylor, R. L. et al. Blue food demand across geographic and temporal scales. Nat. Commun. 12, 5413 (2021).

    Article 
    CAS 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farmery, A. K. et al. Blind spots in visions of a ‘blue economy’ could undermine the ocean’s contribution to eliminating hunger and malnutrition. One Earth 4, 28–38 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Koehn, J. Z. et al. Fishing for health: do the world’s national policies for fisheries and aquaculture align with those for nutrition? Fish Fish. https://doi.org/10.1111/FAF.12603 (2021).

    Article 

    Google Scholar
     

  • Fishery and Aquaculture Statistics. Global Capture Production 1950–2019 (FishstatJ) https://www.fao.org/fishery/en/statistics (FAO, 2021).

  • Short, R. E. et al. Harnessing the diversity of small-scale actors is key to the future of aquatic food systems. Nat. Food 2, 733–741 (2021).

  • Teh, L. C. L. & Sumaila, U. R. Contribution of marine fisheries to worldwide employment. Fish Fish. 14, 77–88 (2013).

    Article 

    Google Scholar
     

  • Loring, P. A. et al. in Transdisciplinarity for Small-Scale Fisheries Governance: Analysis and Practice (eds Chuenpagdee, R. & Jentoft, S.) 55–73 (Springer, 2019).

  • Hicks, C. C. et al. Rights and representation support justice across aquatic food systems. Nat. Food 3, 851–861 (2022).

  • Troell, M. et al. Does aquaculture add resilience to the global food system? Proc. Natl Acad. Sci. USA 111, 13257–13263 (2014).

    Article 
    CAS 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferguson, C. E. et al. Local practices and production confer resilience to rural Pacific food systems during the COVID-19 pandemic. Mar. Policy 137, 104954 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tigchelaar, M. et al. Compound climate risks threaten aquatic food system benefits. Nat. Food 2, 673–682 (2021).

    Article 

    Google Scholar
     

  • Nutrition and Food Systems. A Report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security (Food and Agricultural Organization, 2017).

  • von Braun, J., Afsana, K., Fresco, L. O. & Hassan, M. Food systems: seven priorities to end hunger and protect the planet. Nature 597, 28–30 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Transforming Our World: the 2030 Agenda for Sustainable Development (United Nations, 2015).

  • Sumaila, U. R. & Tai, T. C. End overfishing and increase the resilience of the ocean to climate change. Front. Mar. Sci. 7, 523 (2020).

    Article 

    Google Scholar
     

  • The State of World Fisheries and Aquaculture 2020. Sustainability in Action (FAO, 2020).

  • Thilsted, S. H. et al. Sustaining healthy diets: the role of capture fisheries and aquaculture for improving nutrition in the post-2015 era. Food Policy 61, 126–131 (2016).

    Article 

    Google Scholar
     

  • Roos, N., Wahab, M. A., Chamnan, C. & Thilsted, S. H. The role of fish in food-based strategies to combat vitamin A and mineral deficiencies in developing countries. J. Nutr. 137, 1106–1109 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Starling, P., Charlton, K., McMahon, A. T. & Lucas, C. Fish intake during pregnancy and foetal neurodevelopment—a systematic review of the evidence. Nutrients 7, 2001–2014 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Byrd, K. A., Pincus, L., Pasqualino, M. M., Muzofa, F. & Cole, S. M. Dried small fish provide nutrient densities important for the first 1000 days. Matern. Child Nutr. 17, e13192 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Starling, P., Charlton, K., McMahon, A. T. & Lucas, C. Fish intake during pregnancy and foetal neurodevelopment—a systematic review of the evidence. Nutrients 7, 2001–2014 (2015).

    Article 

    Google Scholar
     

  • Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Wolk, A. Potential health hazards of eating red meat. J. Intern. Med. 281, 106–122 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richi, E. B. et al. Health risks associated with meat consumption: a review of epidemiological studies. Int. J. Vitam. Nutr. Res. 85, 70–78 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Popkin, B. M. & Gordon-Larsen, P. The nutrition transition: worldwide obesity dynamics and their determinants. Int. J. Obes. 28, S2–S9 (2004).

    Article 

    Google Scholar
     

  • Zeng, L. et al. Trends in processed meat, unprocessed red meat, poultry, and fish consumption in the United States, 1999–2016. J. Acad. Nutr. Diet. 119, 1085–1098 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • OECD-FAO Agricultural Outlook 2012-2021 (OECD, accessed 31 August 2021); https://stats.oecd.org/Index.aspx?DataSetCode=HIGH_AGLINK_2012.

  • World Development Indicators https://databank.worldbank.org/reports.aspx?source=world-development-indicators (The World Bank, 2012).

  • Manson, J. E. et al. Marine n−3 fatty acids and prevention of cardiovascular disease and cancer. N. Engl. J. Med. 380, 23–32 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller, V. et al. Evaluation of the quality of evidence of the association of foods and nutrients with cardiovascular disease and diabetes: a systematic review. JAMA Netw. Open 5, e2146705(2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdelhamid, A. S. et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 11, CD003177 (2018).

  • Guasch-Ferré, M. et al. Meta-analysis of randomized controlled trials of red meat consumption in comparison with various comparison diets on cardiovascular risk factors. Circulation 139, 1828–1845 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Moberg, E. et al. Combined innovations in public policy, the private sector and culture can drive sustainability transitions in food systems. Nat. Food 2, 282–290 (2021).

    Article 

    Google Scholar
     

  • Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

    Article 
    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Parker, R. W. R. et al. Fuel use and greenhouse gas emissions of world fisheries. Nat. Clim. Change https://doi.org/10.1038/s41558-018-0117-x (2018).

    Article 

    Google Scholar
     

  • Ainsworth, R., Cowx, I. G. & Funge-Smith, S. A review of major river basins and large lakes relevant to inland fisheries. FAO Fish. Aquac. Circ. https://doi.org/10.4060/CB2827EN (2021).

    Article 

    Google Scholar
     

  • Hilborn, R., Banobi, J., Hall, S. J., Pucylowski, T. & Walsworth, T. E. The environmental cost of animal source foods. Front. Ecol. Environ. 16, 329–335 (2018).

    Article 

    Google Scholar
     

  • Myers, R. A. & Worm, B. Rapid worldwide depletion of predatory fish communities. Nature 423, 280–283 (2003).

    Article 
    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Pérez Roda, M. A. et al. A Third Assessment of Global Marine Fisheries Discards (FAO, 2019).

  • Robinson, J. P. W. et al. Managing fisheries for maximum nutrient yield. Fish Fish. https://doi.org/10.1111/FAF.12649 (2022).

  • Naylor, R. L. et al. A 20-year retrospective review of global aquaculture. Nature 591, 551–563 (2021).

    Article 
    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Henriksson, P. G. et al. Interventions for improving the productivity and environmental performance of global aquaculture for future food security. One Earth 4, 1220–1232 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Hamilton-Hart, N. & Stringer, C. Upgrading and exploitation in the fishing industry: contributions of value chain analysis. Mar. Policy 63, 166–171 (2016).

    Article 

    Google Scholar
     

  • Weeratunge, N. et al. Small-scale fisheries through the wellbeing lens. Fish Fish. 15, 255–279 (2014).

    Article 

    Google Scholar
     

  • Clapp, J. The problem with growing corporate concentration and power in the global food system. Nat. Food 2, 404–408 (2021).

    Article 

    Google Scholar
     

  • Hanich, Q. et al. Small-scale fisheries under climate change in the Pacific Islands region. Mar. Policy 88, 279–284 (2018).

    Article 

    Google Scholar
     

  • Selig, E. R. et al. Mapping global human dependence on marine ecosystems. Conserv. Lett. 12, e12617 (2019).

    Article 

    Google Scholar
     

  • Gephart, J. A., Deutsch, L., Pace, M. L., Troell, M. & Seekell, D. A. Shocks to fish production: identification, trends, and consequences. Glob. Environ. Change 42, 24–32 (2017).

    Article 

    Google Scholar
     

  • Allison, E. H., Béné, C. & Andrew, N. L. in Small-Scale Fisheries Management: Frameworks and Approaches for the Developing World (eds Pomeroy, R. & Andrew, N. L.) 206–238 (CABI, 2011).

  • Leslie, P. & McCabe, J. T. Response diversity and resilience in social-ecological systems. Curr. Anthropol. 54, 114–143 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ota, Y., Allison, E. H. & Fabinyi, M. Evolving the narrative for protecting a rapidly changing ocean, post-COVID-19. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 1925–1926 (2021).

    Article 

    Google Scholar
     

  • Hulme, M. One Earth, many futures, no destination. One Earth 2, 309–311 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Song, A. M. & Soliman, A. Situating human rights in the context of fishing rights – contributions and contradictions. Mar. Policy 103, 19–26 (2019).

    Article 

    Google Scholar
     

  • Herforth, A. et al. Cost and Affordability of Healthy Diets across and within Countries: Background Paper for the State of Food Security and Nutrition in the World 2020 FAO Agricultural Development Economics Technical Study 309369 (FAO, 2020).

  • Imagine a world without hunger, then make it happen with systems thinking. Nature 577, 293–294 (2020).

  • Herrero, M. et al. Articulating the effect of food systems innovation on the Sustainable Development Goals. Lancet Planet. Heal. 5, e50–e62 (2021).

    Article 

    Google Scholar
     

  • Tezzo, X., Bush, S. R., Oosterveer, P. & Belton, B. Food system perspective on fisheries and aquaculture development in Asia. Agric. Human Values 38, 73–90 (2021).

    Article 

    Google Scholar
     

  • Clark, M. A., Springmann, M., Hill, J. & Tilman, D. Multiple health and environmental impacts of foods. Proc. Natl Acad. Sci. USA 116, 23357–23362 (2019).

    Article 
    CAS 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dubois, P., Griffith, R. & Nevo, A. Do prices and attributes explain international differences in food purchases. Am. Econ. Rev. 104, 832–867 (2014).

    Article 

    Google Scholar
     

  • Blake, C. E. et al. Elaborating the science of food choice for rapidly changing food systems in low-and middle-income countries. Glob. Food Sec. 28, 100503 (2021).

    Article 

    Google Scholar
     

  • Dey, M. M. et al. Demand for fish in Asia: a cross-country analysis. Aust. J. Agric. Resour. Econ. 52, 321–338 (2008).

    Article 

    Google Scholar
     

  • Gallet, C. The demand for fish: a meta-analysis of the own-price elasticity. Aquac. Econ. Manag. 13, 235–245 (2009).

    Article 

    Google Scholar
     

  • Springmann, M. et al. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet. Heal. 2, E451–E461 (2018).

    Article 

    Google Scholar
     

  • Ryckman, T., Beal, T., Nordhagen, S., Chimanya, K. & Matji, J. Affordability of nutritious foods for complementary feeding in Eastern and Southern Africa. Nutr. Rev. 79, 35–51 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryckman, T., Beal, T., Nordhagen, S., Murira, Z. & Torlesse, H. Affordability of nutritious foods for complementary feeding in South Asia. Nutr. Rev. 79, 52–68 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belton, B., Reardon, T. & Zilberman, D. Sustainable commoditization of seafood. Nat. Sustain. 3, 677–684 (2020).

    Article 

    Google Scholar
     

  • van Putten, I. et al. Fresh eyes on an old issue: demand-side barriers to a discard problem. Fish. Res. 209, 14–23 (2019).

    Article 

    Google Scholar
     

  • Koehn, J., Quinn, E. L., Otten, J. J., Allison, E. H. & Anderson, C. M. Making seafood accessible to low-income and nutritionally vulnerable populations on the U.S. West Coast. J. Agric. Food Syst. Community Dev. 10, 171–189 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Röös, E. et al. Policy Options for Sustainable Food Consumption: Review and Recommendations for Sweden (Mistra Sustainable Consumption Project, 2021).

  • Fesenfeld, L. P., Wicki, M., Sun, Y. & Bernauer, T. Policy packaging can make food system transformation feasible. Nat. Food 1, 173–182 (2020).

    Article 

    Google Scholar
     

  • Farmery, A. K. et al. Food for all: designing sustainable and secure future seafood systems. Rev. Fish Biol. Fish. 32, 101–121 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Springmann, M. et al. The healthiness and sustainability of national and global food based dietary guidelines: modelling study. Br. Med. J. 370, m2322 (2020).

    Article 

    Google Scholar
     

  • Bogard, J. R. et al. Higher fish but lower micronutrient intakes: temporal changes in fish consumption from capture fisheries and aquaculture in Bangladesh. PLoS ONE 12, e0175098 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allison, E. H. et al. Rights-based fisheries governance: from fishing rights to human rights. Fish Fish. 13, 14–29 (2012).

    Article 

    Google Scholar
     

  • Cole, S. M. et al. Gender accommodative versus transformative approaches: a comparative assessment within a post-harvest fish loss reduction intervention. Gend. Technol. Dev. 24, 48–65 (2020).

    Article 

    Google Scholar
     

  • Golden, C. D. et al. Nutrition: fall in fish catch threatens human health. Nature 534, 317–320 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lam, V. W. Y. et al. Climate change, tropical fisheries and prospects for sustainable development. Nat. Rev. Earth Environ. 1, 440–454 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Heltberg, R., Siegel, P. B. & Jorgensen, S. L. Addressing human vulnerability to climate change: toward a ‘no-regrets’ approach. Glob. Environ. Change 19, 89–99 (2009).

    Article 

    Google Scholar
     

  • Clarke, T. M. et al. Climate change impacts on living marine resources in the Eastern Tropical Pacific. Divers. Distrib. 27, 65–81 (2021).

    Article 

    Google Scholar
     

  • Cheung, W. W. L., Jones, M. C., Reygondeau, G. & Frölicher, T. L. Opportunities for climate-risk reduction through effective fisheries management. Glob. Change Biol. 24, 5149–5163 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Oyinlola, M. A. et al. Projecting global mariculture production and adaptation pathways under climate change. Glob. Change Biol. 28, 1315–1331 (2022).

    Article 

    Google Scholar
     

  • Gephart, J. A. et al. Scenarios for global aquaculture and its role in human nutrition. Rev. Fish. Sci. Aquac. 29, 122–138 (2020).

    Article 

    Google Scholar
     

  • Hua, K. et al. The future of aquatic protein: implications for protein sources in aquaculture diets. One Earth 1, 316–329 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Shepon, A. et al. Sustainable optimization of global aquatic omega-3 supply chain could substantially narrow the nutrient gap. Resour. Conserv. Recycl. 181, 106260 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sprague, M., Dick, J. R. & Tocher, D. R. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006–2015. Sci. Rep. 6, 21892 (2016).

    Article 
    CAS 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Béné, C., Hersoug, B. & Allison, E. H. Not by rent alone: analysing the pro-poor functions of small-scale fisheries in developing countries. Dev. Policy Rev. 28, 325–358 (2010).

    Article 

    Google Scholar
     

  • Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–98 (2019).

    Article 
    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Cohen, P. J. et al. Securing a just space for small-scale fisheries in the blue economy. Front. Mar. Sci. 6, 171 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Kent, G. Fish Trade, Food Security and the Human Right to Adequate Food (FAO, 2003).

  • Stoll, J. S., Crona, B. I., Fabinyi, M. & Farr, E. R. Seafood trade routes for lobster obscure teleconnected vulnerabilities. Front. Mar. Sci. 5, 239 (2018).

    Article 

    Google Scholar
     

  • Mamun, A. A. et al. Export-driven, extensive coastal aquaculture can benefit nutritionally vulnerable people. Front. Sustain. Food Syst. 5, 713140 (2021).

    Article 

    Google Scholar
     

  • Mccay, B. J. et al. Cooperatives, concessions, and co-management on the Pacific coast of Mexico. Mar. Policy 44, 49–59 (2014).

    Article 

    Google Scholar
     

  • Kittinger, J. N. et al. Applying a jurisdictional approach to support sustainable seafood. Conserv. Sci. Pract. 3, e386 (2021).


    Google Scholar
     

  • Fakhri, M. The Right to Food in the Context of International Trade Law and Policy. Note by the Secretary, United Nations General Assembly, distributed on 22 July 2020 (UN, 2020).

  • Arthur, R. I. et al. Small-scale fisheries and local food systems: transformations, threats and opportunities. Fish Fish. https://doi.org/10.1111/FAF.12602 (2021).

    Article 

    Google Scholar
     

  • Barange, M. et al. Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nat. Clim. Change 4, 211–216 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Belton, B. et al. COVID-19 impacts and adaptations in Asia and Africa’s aquatic food value chains. Mar. Policy 129, 104523 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Anrooy, R. Review of the Current State of World Aquaculture Insurance (Food and Agriculture Organization of the United Nations, 2006).

  • Tlusty, M. F., Hardy, R. & Cross, S. F. Limiting size of fish fillets at the center of the plate improves the sustainability of aquaculture production. Sustainability 3, 957–964 (2011).

    Article 

    Google Scholar
     

  • Rihoux, B. & De Meur, G. in Configurational Comparative Methods: Qualitative Comparative Analysis (QCA) and Related Techniques (eds Rihoux, B. & Ragin, C. C.) 33–68 (Sage, 2009).

  • Rihoux, B. & Ragin, C. (eds.) Configurational Comparative Methods: Qualitative Comparative Analysis (QCA) and Related Techniques (Sage, 2009).

  • Hamby, D. M. A review of techniques for parameter sensitivity analysis of environmental models. Environ. Monit. Assess. 32, 135–154 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar